Improving reliability and reducing costs of cardiotoxicity assessments using laser-induced cell poration on microelectrode arrays

Here, we propose laser-induced optoacoustic poration combined with CMOS-MEA technology as a reliable and effective platform to detect cardiotoxicity. This approach enables the acquisition of high-quality action potential recordings from large numbers of cardiomyocytes within the same culture well, providing reliable data using single-well MEA devices and single cardiac syncytia per each drug. Thus, this technology could be applied in drug safety screening platforms reducing times and costs of cardiotoxicity assessments, while simultaneously improving the data reliability.

Long-term in vitro recording of cardiac action potentials on microelectrode arrays for chronic cardiotoxicity assessment

Here, we show that optoporation applied to microelectrode arrays enables measuring action potentials from human-derived cardiac syncytia for more than 1 continuous month and provides reliable data on chronic cardiotoxic effects caused by known compounds such as pentamidine. The technique has high potential for detecting chronic cardiotoxicity in the early phases of drug development.

Plasmonic meta-electrodes allow intracellular recordings at network level on high-density CMOS-multi-electrode arrays

Here, we introduce the concept of a meta-electrode, a planar porous electrode that mimics the optical and biological behaviour of three-dimensional plasmonic antennas but also preserves the ability to work as an electrode. Its synergistic combination with plasmonic optoacoustic poration allows commercial complementary metal–oxide semiconductor multi-electrode arrays to record cardiac intracellular action potentials in large cellular networks.

Intracellular Recording of Human Cardiac Action Potentials on Market-Available Multielectrode Array Platforms

Here, we show that optoacoustic poration is also very effective for porating cells on a large family of MEA electrode configurations, including robust electrodes made of nanoporous titanium nitride or disordered fractal-like gold nanostructures. This enables the recording of high quality cardiac action potentials in combination with optoacoustic poration, providing thus attenuated intracellular recordings on various already commercial devices used by a significant part of the research and industrial communities.

Intracellular action potential recordings from cardiomyocytes by ultrafast pulsed laser irradiation of fuzzy graphene microelectrodes

Here, we present a microelectrode platform consisting of out-of-plane grown three-dimensional fuzzy graphene (3DFG) that enables recording of intracellular cardiac action potentials with high signal-to-noise ratio. We exploit the generation of hot carriers by ultrafast pulsed laser for porating the cell membrane and creating an intimate contact between the 3DFG electrodes and the intracellular domain. This approach enables us to detect the effects of drugs on the action potential shape of human-derived cardiomyocytes.

Laser-Induced Action Potential-Like Measurements of Cardiomyocytes on Microelectrode Arrays for Increased Predictivity of Safety Pharmacology

A novel device, described here, can repetitively open the membrane of cardiomyocytes cultivated on top of the MEA electrodes at multiple cultivation time points, using a highly focused nanosecond laser beam. The laser poration results in transforming the electrophysiological signal from FP to intracellular-like APs (laser-induced AP, liAP) and enables the recording of transcellular voltage deflections. This intracellular access allows a better description of the AP shape and a better and more sensitive classification of proarrhythmic potentials than regular MEA recordings. This system is a revolutionary extension to the existing electrophysiological methods, permitting accurate evaluation of cardiotoxic effect with all advantages of MEA-based recordings (easy, acute, and chronic experiments, signal propagation analysis, etc.).

Discover our product